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We calculate the cross section for e+e- + plrlr on the basis of partial-wave dispersion 
relations in the in channel taking proper account of anomalous singularity contribu- 
tions. The appearance of anomalous thresholds is due to the fact that the vertex yyp(~?r) 
becomes internally unstable as the virtual photon mass is increased. Reasonable agree- 
ment with existing data is found. The anomalous singularity contributions provide by 
far the dominant part of the cross section which is a warning to using naive vector 
dominance extrapolations in estimating the electron-positron cross section. 

1. INTRODUCTION 

Recently a series of experiments on e+e--annihilation into hadrons at Frascati 
and SLAC have produced data on efe- -+ rr+‘rr-7~+~- at center-of-mass energies 
(@)1/2 between 1 and 5 GeV [I]. The cross section for e+e- -j 4rrf shows a broad 
peak centered at (q2)li2 = 1.6 GeV and falls off with increasing q2 like q-6 [l]. 
A quite similar enhancement in the four-pion system around 1.6 GeV has also 
been seen in the high-energy photoproduction process yp -+ r&r-&r-p [2]. 
Both phenomena are usually interpreted as the production of a Jpc = l--resonance, 
called p’, which is directly coupled to the photon and decays predominantly into 
2+2~- [3]. Then the reaction yp +2rr+2cp can proceed through the usual VDM 
type mechanism. Actually in both experiments it was found that the 27r+27r- 
mass enhancement is dominated by the p%r+n-- state [I, 21. It is well known that 
the p’ interpretation of these experiments is not unique [4]. 
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An explanation equally applicable to e+e- annihilation and to photoproduction 
is the opening of quasi-two-body decay modes of the p” which produces bumps right 
after their threshold, e.g., p” -+ POE, p” -+ p”f, p” -+ n*A,F etc. [5-71. In particualr, 
in [7] it was shown that the experimental 27r+2~ mass distribution in e+e- + 
27r+2rr- and yp -+ 27r+27~-p could well be fitted in an isobaric model for y + ~O~T+T-, 
where the photon couples directly to the p” and an I = J = 0 resonance, the E, 
which occurs in the n+n- channel. The absolute value of the cross section could not 
be calculated since the couplings of the p” to the POE system are essentially unknown. 
Only if one of the p”poc couplings was related using VDM to the EYY coupling, 
which had been calculated in a recent dynamical model [8], it turned out that the 
coupling was of the right order to reproduce the measured cross section for 
e+e- ---f p%+r-. This procedure was unsatisfactory in two respects. First the 
coupling of the p” to the POE system depends on two independent coupling constants. 
Only one of them occurs in the coupling of the real photon to the YE system. 
Second it is rather doubtful that the extrapolation in the vector meson masses 
squared from q2 = 2.5 GeV2 and p12 = mo2, respectively, to q2 = p12 = 0 (see 
Fig. 1 for the notation of momenta) for both vector mesons is well represented by 
the naive VDM approach. Both PO’S and the E can decay into two pions. Therefore 
in all three mass variables of the p”poe vertex two-pion intermediate states occur 
which lead to anomalous thresholds in the respective variables if the others are 
above 2mn2. 

In this paper we consider the matrix element for y + pan-+n- as a function of s, 
the rr+n- invariant mass squared, and for fixed angular momentum states in the 
27r system so that we encounter anaomalous singularities in this variable for the 
partial wave amplitudes. The virtual photon mass is also allowed to vary but the 
partial wave dispersion relations are written in s and not in q2. This way it is possible 
to take into account the full variation of the two-pion s-wave phase shift. 

The framework of our calculations is similar to an earlier work, done by two 
of us, for the reaction yy + T+~T- with two real photons [8]. We use dispersion 
relations for the partial waves of y + p O~T+C in the T+C channel. The left-hand 
cut is approximated by rr and w  exchange while on the right-hand cut we assume 
elastic unitarity. Here we restrict ourselves to the I = J = 0 contribution in the 
vicinity of the E mass. Using a Breit-Wigner parametrization for the phase shift 
we calculate the form factors for y -+ POE as a function of q2. Of course, the derived 
equations can be used also for other partial waves and for other input phase shifts 
than the: usual resonance parametrizations. But their numerical evaluation would 
be beyond the scope of this paper. The outline of the paper is as follows. In Section 2 
we discuss the kinematical decomposition of the matrix elements and the relevant 
formulas for the calculation of form factors and cross sections. In Section 3 the 
dispersion relations are introduced and the anomalous cut contributions derived. 
In Section 4 we describe our input assumptions concerning the rr7~ phase shifts 
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and present and discuss the results of our calculations. Finally Section 5 is left 
for some concluding remarks. 

2. DECOMPOSITION OF THE MATRIX ELEMENTS 

To introduce the final state interactions in the two-pion system of p”~+c- 
based on unitarity and dispersion relations, we work in the two pion center-of-mass 
system pz + p3 = 0. The notation of the kinematic variables is shown in Fig. 1. 

FIG. 1. Kinematic diagram for y  -+ pnx. 

To control the kinematic singularities we also introduce invariant amplitudes 
&(s, t). The decomposition of the matrix element for y + p%r+n- in terms of 
the A&, t) (i = I,..., 5) was introduced in [7] and will not be repeated here. The 
next step is to relate the s-channel helicity amplitudes (in the system pz + p3 = 0) 
to the invariant amplitudes Ai . The s-channel helicity amplitudes are defined by: 

TA,, = <pl , h , p2 , p3 I L(O) I O> eW 

= e”(hl)* TMye$c) (2.1) 

where h, , K are the helicities of the p meson and the virtual photon, respectively. 
The cf, are decomposed into gauge invariant covariants Fuy, defined in [7], 

T,,” = i Ai& t) F;, . (2.2) 
i=l 

From (2.1) the s-channel helicity amplitudes can be expressed by the invariant 
amplitudes, i.e., 

where 

(2.3) 

(2.4) 

The gi”,, are listed in Appendix A together with the definitions of the Mandelstam 
variables s, t, U. 
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The s-channel helicity amplitudes are decomposed into partial waves: 

(2.5) 

where 9 is the angle between q and pz in the system q = p1 . 
For the matrix element y --f POE we use the following decomposition: 

<4PJ> PO(Pb , PII J”(O) I 0) 

where q = pa + pa . The definition of these invariant transition form factors G, 
and G, for y -+ POE differs from the definitions used earlier 163. The tensor (2.6) 
is divergenceless concerning multiplication with q” but also concerning multi- 
plication with pbP. In order to obtain the transition matrix elements for the usual 
polarisation states of the p” we must multiply (2.6) with the appropriate polari- 
zation vectors eU(A1). With (2.6) we calculate the helicity form factors P for 
y -+ POE in the system q = 0, introduced in [6]. 

The relations between the transverse and longitudinal form factor P and PO and 
the invariant form factors G1 and G, are: 

r1 = %P,q + G,((Pbq)2 - Pb2d 

r” = (q2pb2)1’2 G1 . 
(2.7) 

These two helicity form factors determine the cross section for e+e- -+ POE, i.e., [6] 

da/d cos 9 = $$${I r” I2 sin2 19 + 1 P I2 (1 + cos2 0)) w3) 

where 8 is the angle between the momentum of the E resonance and the direction of 
the incoming positron, 1 pa I is the momentum of the E in the e+e- center-of-mass 
system. 

The contribution of the E resonance to the invariant amplitudes is 

A, = s _ m 2’+ im r g~nn(G1-t (qP1) G,) 
E E E 

(2.9) 

A, = A, = A, = 0. 
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The corresponding s-channel helicity amplitudes are: 

The other helicity amplitudes vanish for J = 0 exchange in the s channel. 
From (2.10) we can immediately obtain the form factors G, and G, by evaluating 
TO, and T,, at s = pn,‘C 

G, = m,rc &m(P12431’2 Im Go 
m,r, 

Im Tll - (p!g;$,2 

(2.11) 
G, = 

&AP1d2 - P1243 ( Too). 

3. DISPERSION RELATIONS AND ANOMALOUS THRESHOLDS 

The dynamical calculations are similar to the calculations for the process 
yy -+ ~ST, which have been performed by two of us [8]. Because in y -+ porn the 
qz of the virtual photon is timelike in such a way it can decay into real particles 
we encounter anomalous thresholds. The one-pion exchange in the t- and u-channel 
is the first to aquire anomalous thresholds. The next anomalous threshold is 
obtained for 377 exchange in the t- and u-channel. This contribution will be approxi- 
mated by w  exchange. The anomalous thresholds encountered here are, however, 
different from those arising from the one-pion exchange. For one-pion exchange 
the upper (r -+ rr) and the lower vertex (p -+ rn) are unstable. In this case the 
anomalous cuts are on the real axis. For w  exchange only the upper vertex is 
unstable (r + WT) whereas the lower vertex is stable (p - WT). In this case the 
anomalous thresholds are in the complex plane as will be seen later. 

For our calculations we need the partial wave projections of the t- and u-channel 
contributions. Furthermore we must find out which combinations of the partial 
wave amplitudes are free of kinematical singularities and what are the other 
kinematical constraints in particular at the different thresholds (or pseudo- 
thresholds). As usual we define the partial wave projections of the invariant 
amplitudes A& t): 

A$@) = 3 
s +’ d cos 8A&, t) dio(cos 0). 

-1 
(3.0 

The relations between the partial-wave projections of the he&city amplitudes 
and the Aij are easily derived with the help of the formulas in Appendix A. 
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In this paper we need only the s-wave amplitudes. For them the decomposition is: 

T," = - tP1d4° + thd - q'l~2~W2~ - Km) + 2q2)~22%f22 

+ 2 lP2 I lQl(42&1 +P12A,1) -P1242&o (3.2) 

T:o = tq2p12)1'2{-40 + +~2~~42' + SP~~A,~ + 2 I pz I I q I W + 49 - h-w) A,‘). 

All other s-wave helicity amplitudes vanish. The Ac can be calculated from a 
fixed-s dispersion relation. Then Ai’ - (Ip2 I I slY if lp2l --+ 0 or Iql ---f 0 for 
those parts of the Ai for which the t-channel or u-channel exchanges are stable 

O concerning the decay into p TT f. This is, for example, fulfilled for pion exchange. 
Then Ttl and Tie obey constraints for 1 q 1 --f 0, i.e., plq = -l(p12q2)‘12. For 
example, we have in the limit 1 q 1 = 0: 

T,q 2~ T,,, = (plq i (p12q2)1’2)(-A10 + $p22A20 F (p12q2Y2 A:), (3.3) 

i.e., T& -k Tie must vanish for plq = -(p12q2)lj2 or s = ((p12)“” + (q”)‘/“)” and 
Ttl - Tzo must vanish for plq = (p 12 2 lj2 q ) or s = ((p12)“‘” - (q”)‘/“)“. Therefore 
we write down subtracted dispersion relations for T,“1 f T&, with subtraction points 
s = ((pl”)l’” & (q2)1’2)2, respectively. This way we fulfill the necessary threshold 
conditions in connection with pion and w  exchange. At the threshold 1 p2 j = 0 
a similar constraint as for j q 1 = 0 does not exist. 

With (3.2) it is easy to calculate the contributions of 7~ and o exchange 
to Tfl i To. The invariant amplitudes for these two exchanges have been given 
in [7]. To avoid complications with the bad asymptotic behavior of elementary 
vector meson exchange we follow [8] and assume that the w  lies on a Regge 
trajectory 01, . Otherwise further subtractions are necessary in the partial-wave 
dispersion relations. The reggeization of the w  exchange with the help of the Khuri 
representation in order to incorporate the lowest thresholds imposed by the 
boundary of the diagram in Fig. 2 amounts to a multiplication of the elementary 
w-exchange term with a form factor F of the following form (see [8]): 

F = expKxO> - 1) t%N (3.4) 
where 

S(s) = arc cash ztXBcs) 

zt = (2s + t - 2mr2 - q2 - mp2 + (m,2 - mn2)(q2 - m,2)/t}/4p1,p24 

p& = (t - ((q”)l/” - mJ2)(t - ((q2)‘i2 + mJ2)/4t 

p& = (t - (m, - mJ2)(t - (m, + mJ2)/4t (3.5) 

b(s) = {((s - sJ(s - s+) + sq2mp2/m,2)1’2 + 2(s - q2 - mn2)} 

X (2mr2/(s - 4mn2)) + mn2. 
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FIG. 2. Diagram which determines the boundary in the Khuri representation for o exchange. 

In the limit q2 + 0, m,2 -+ 0 this reduces to the familiar form [8] 

((8) = arc cosh(1 + (S - 4mn2)(9s - 4mn2)/32smr2). 

With this form factor the partial wave projection of the o exchange diagram is 
calculated numerically. The result will be called t&(s), i = 1,2, where 

tlo = Tfl + T,“, 
(3.6) 

t,O = T& - Tie. 

On the right-hand cut we assume unitarity with two-pion intermediate states, i.e., 

Im &O(s) = CZ-‘~O(‘) sin 6,(s) t?(s) (3.7) 

where 6,(s) is the 7~7~ s-wave phase shift for I = 0. All other intermediate states are 
neglected. This should be a reasonable approximation at least up to around 
1 GeV2, in particular, since anomalous singularities will play a dominant role and 
higher intermediate states have less chance to aquire anomalous singularities 
compared to the two-pion intermediate state. The elastic 7~ scattering amplitude 
uo(s) is written in the usual N/D form: 

so(s) = (s/(s - 4m m 2))1/2 ei8o(s) sin 6,(s) = N(s)/D(s). (3.8) 

Under the condition that the left-hand cut L and the right-hand cut of &O(S) do 
not overlap we can fulfill the Eq. (3.7) by writing a dispersion relation for tie(s) D(s) 
over the left-hand cut: 

(3.9) 

In (3.9) the amplitude tie(s) is expressed by D(s) and the discontinuity of t?(s) 



THE e+e- CROSS SECTION 171 

over the left-hand cut L. As is well known, Eq. (3.9) can be transformed also into 
an integral over the right-hand cut: 4mn2 < s < co. The result is: 

$ys) - &(S) = -D-l(s) $ jm &Is’ Irn y $(“‘) (3.10) 
4m,z 

where t&(,r) is given by (3.9) with D = 1. Of course (3.10) is the standard Omnes 
solution (9). The D-function can be calculated from the phase shift 6,(s) 

D(s) = exp /-KS - so>/.rr> j41 ds’ (~o(fY(s’ - 3G - s))l 
c2 

(3.11) 

where s0 is arbitrary. We have Im D = -e% sin S,D = -((s - 4m,,2)/s)1/2 N. 
Here we have left out the subtraction terms for ease of writing, and so we will do 
in the following. Including the subtraction terms (subtraction point so) Eqs. (3.9) 
and (3.10) would read 

s 
D(d) Im Q(s’) D(so) o 

Lds’ (s’ - s)(s’ - so) + D@) ‘&O) (3.9a) 

s - so 1 
s 

m 
b'%> - tiOL(s) = - D(s) 

&(‘,(s’)Im D(d) -_ ~ 4na,2 ds' (s, _ s)(s, _ soj . 

Eq. (3.10) is valid if no anomalous thresholds are present. In the following part 
of this section we investigate how (3.9) or (3.10) are modified if anomalous thres- 
holds occur in &O(s). 

We start with the case, where the left-hand cut t& is approximated by the one- 
pion exchange contribution tj’,, . 

First we study the analytic structure of tf,, . The partial waves for the one-pion 
exchange terms are calculated with the help of (3.2). The partial-wave projections 
of the invariant amplitudes (they are given in [7]) are obtained as 

A,j = -eg,,,F,(q2) Aj 

A,j = 2es,,&(q2) p 2 + be _ s Ai 
1 

(3.12) 

so that 

A,j = A,? = A,j=() 

1 
s 

+1 
Aj = 2 --1 dcose tl,z + Ulrn2) ( Pj(COS fl) 

n li 
. (3.13) , =- 2 , p21, , Q , <Qdz> + C-V QA-3) 



172 KRAMER, SCHIERHOLZ AND SUNDERMEYER 

2 - q2 sl/Z(s - p12 - 42) 
z=s4y;;,,q, = B (s - 4m 2)1/2(s - .T+)~/~(,s - s-)1/2 ’ 

Here S, is the threshold for the process ‘yp” -+ r+n- whereas in the reaction 
y -P p%+w- the variable s varies in the interval: 4m,,2 < s < S- with srt = 
(k2Y2 It (PW2>“, P12 = mo2. Except for the extra kinematic pole at s = p12 + q2 
in A$, which must cancel in the sum of all partial waves for pion exchange, the 
singularity structure of the partial waves is determined by the projections Aj in 
(3.13). For s > S, the partial-wave projection Ai is proportional to &(z) as given 
by (3.13), in particular for j = 0: 

--A0 = , p2 ;, q , Qo(4 = 
1 zfl 

2lP,l Iql lnz- 1’ 
(3.14) 

For stable particles so that 0 < q2 < 4m,2 and 0 ,< mo2 < 4mi2 and in absence 
of anomalous thresholds, i.e., for q2 + mrr2 < 4mT2 the expressions (3.13) or 
(3.14) can be continued to all complex s as usual. To reach the case q2 + mp2 > 4mr2 
which is the relevant case for y -+ p7~n where q2 is above (m, + 2mJ2 we start 
from (3.14) valid for q2 + rnp2 < 4m,,2 and continue in rno2 and q2. Problems of 
this sort have been solved before in connection with deuteron reactions where 
anomalous thresholds occur because of the small binding energy of the deuteron. 
Essentially we follow the methods developed for this case [IO]. As a function of s 
the amplitude A0 has branch point singularities at s = 0, 4mn2 and ((q2)lj2 f mP)2, 
which come from the square roots in I p2 j and j q 1, and at points s for which 

z= *1 (3.15) 

To locate these latter singularities in the complex s plane we must solve (3.15). 
We shall do this and study the branch points as a function of mp2 and q2. Let us 
start with the case of stable external particles, so that 0 ,< q2 < 4m,2 and 
0 < mp2 < 4m,2 with q2 + m, 2 < 4mT2 to avoid anomalous thresholds caused 
by bound states with small binding energies. 

The roots of (3.15) are found from 

as2 + 2bs + c = 0 (3.16) 

where 
a = me2 

2b = q2mP2 - 2mr2(q2 + m,“) 

c = mT2(q2 - m,2)2. 

(3.17) 
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With s = x + iy Eq. (3.16) is equivalent to 

u(x2 - y”) + 2bx + c = 0 (3.18) 

y(ax + b) = 0. (3.19) 

So the singularities of (3.14) (and of the partial wave amplitudes) are given by the 
points of intersection of the hyperbolas (3.18) with the pair of straight lines y = 0 
and x = -b/u. The hyperbola (Eq. 3.18)) intersects the straight line only if the 
discriminant b2 - UC < 0. The discriminant is equal to 

b2 - UC = ;q2mp2(4mn2 - q2)(4m,2 - mo2) (3.20) 

so that b2 - UC 3 0 for the case of stable external particles. Then the hyperbola 
intersects only the line y = 0 and we have two branch points lying on the real 
axis at points s~,~ which are 

w.2 = -b f (b2 - a~)~/~. (3.21) 

These two points lie between s- and 4nz n2. Equation (3.14) shows that A0 is real in 
the intervals of the real axis: x E [0, s-1 and x E [4mV2, s,] (see Fig. 3 for the 
transformation s -+ z(s)), so that A0 has cuts only for - cc < s < 0 and 
s2 < s < s1 . This cut structure is shown in Fig. 4. The corresponding represen- 
tation, valid for stable external particles, therefore is 

(s’)l/Z 
((s’ - 4m,2)(s’ - s+)(s’ - s-)y2 

+ j-y ds’ -+ 
(s’)l/2 

s - s ((s’ - 4mn2)(s’ - s+)(s’ - s-)y2 - 
(3.22) 

Next we take a fixed value of q2 < 4mT2 and q2 < mQ2, replace mo2 by mp2 + ia 
(E small and positive) in (3.21) and study the branch points as a function of mo2 
with increasing m,,2 starting from a value mo2 < 4mn2. For mp2 ---f rno2 + ie the 
branch points s1 and s2 lie above the real axis. If rn,” is increased s1 and s2 migrate 
parallel to the real axis towards 4mv2 as is shown in Fig. 4. s1 reaches 4mn2 for 
m,” = 4mn2 - q2, and turns around 4m ,2, thereby crossing the right-hand cut 
and reaches the value s = 4mT2 - q2 in the lower half plane if mp2 = 4m,2. s2 then 
has the same value in the upper half plane, since the discriminant vanishes for 
mo2 = 4mv2 (see Eq. (3.20)). Increasing m, 2 further the branch points s1 and s, 
migrate into the complex plane (s,(s,) in the lower (upper) half part), up to the 
points, where mp2 reaches its physical value, as shown in Fig. 4. Now we make 
q2 complex by changing q2 into q2 + i7 (7 > 0, 7 small) and increase q2 from its 
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value below 4m,2 up to 4mn2. Then s2 and sr approach the negative real axis from 
above and below, respectively. They meet at the point S, = s2 = 4mn2 - rnp2 
(see Fig. 4). By increasing q2 up to q2 = m,2 the branch point S, migrates along the 
real axis to the left up to the point s1 = 4m, 2 - mp4Jm,,2 whereas s, recedes to the 
right up to s2 = 0 (see Fig. 4, the endpoints of s1 , s2 , and s- are shown as crosses). 
For q2 = m,2 the branch cut between S, = 0 and s1 disappears. s2 is not a branch 

--_- ___.___ --_--_----- 

I I 

b 
I 

2 

t 

I 

I\ JI 
I 

4 y 

I 
I 

--- - L --+---J--&--- 
I 8 I I I I I * 

& 5 4rni 
I 

s- mp%q’ s+ s 
--------L---‘---J------ 

f 
l 

C I I I 
I I I 

FIG. 3. Transformation s ---f z(s) for the three cases (a) mp2 + qa < 4m,*, (b) “?p* = qp > 

and (c) q2 > mps, mp4 > 4mns, q8 > 4mne. 
4mn2, 
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FIG. 4. 
. . Contmuatron of sl, sa, and s- for increasing mpB and qB up to vaIues of physical 

interest for the x exchange diagram. 

point anymore, as is seen in Fig. 3 where z(s) is given as a function of S. Then 
A0 has the following representation: 

- $0 1 = 1” &‘1 
-02 s’ s - ((s’ - 4m,79(s’ - 4m,2))1/2 

+ /4”“’ &’ 1 2 
(3.23) 

Sl sI--s ((s’ - 4m,2)(s’ - 4moy * 

The second integral on the right-hand side of (3.23) comes from the continuation 
in mo2 and q2 and originates from the deformation of the integration path in 
connection with the endpoint s1 . The next step is to continue q2 further up to 
values above the threshold for the production of purr final states, q2 > (m, + 2m,)2. 
Then s2 turns around the point s = 0 and migrates to the left in the lower half 
plane whereas s1 goes also to the left, the same distance parallel to the real axis. 
s- crosses the positive real axis near the origin without crossing the path of s2 
and migrates to the right in the lower half plane (see Fig. 4, the endpoints of 
continuation are marked by a star). To write down the representation of A0 in 
this case we must deform again the integration path connecting the branch point s1 . 
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Otherwise the location of the cuts is obtained from the transformation s + z(s) 
shown in Fig. 3. The representation for A0 then is: 

- $0 = 1” d&L- 
(s’)l’2 

--m s - s ((s’ - 4m,2)(s’ - s+)(s’ - sp2 

31 1 (s’)l’2 - 
s % ds’ s’ - s ((s’ - 4m,3(s’ - s+)(s’ - sJ)1’2 

s 

s- 
ds’1 

2(s’)l/2 - (3.24) 
4m,2 s’ - s ((s’ - 4m?,2)(s’ - s-)(s’ - s+)p2 - 

We see that for equal external masses mo2 = q2 the representation (3.24) 
coincides with (3.23). A0 now has an imaginary part in the physical region: 
4mn2 ,< s < s- . It is clear that this term will dominate for y + pm-. 

As the next step we incorporate the final state interaction in the s-channel. In 
the situation where q2 + mp2 < 4m,2 and anomalous thresholds are absent the 
final state corrected solution for --$A0 is given by (3.9). The discontinuity over 
the left-hand cut (- co < s < 0 and s, < s ,( sl) can be read off from (3.22), 
so that the final result is 

-;A0 = +-” &‘-A (s’)l/2 D(s’) 
D(s) -03 s - s ((s’ - 4mr2)(s’ - s+)(s’ - K))‘/~ 

1 
4 

Sl 
+ D(s) 

1 
&* ds’-i--- 

(s’)l/2 D(s’) 
s - s ((s’ - 4mn2)(s’ - s+)(s’ - s-))l12 

. (3.25) 

If mp2 and q2 are increased we must continue (3.25) in the same way we did for A0 
without final state interaction. For example for q2 = rnp2 and mo2 > 2mT2 we 
obtain for A0 the following representation instead of (3.23): 

_ $0 = ’ j” &’ 1 W) 
D(s) --m sI--s ((s’ - 4mn2)(s’ - 4m,2))1/2 

1 
-.I 

47n,Z 

+ D(s) 
ds’ ’ 

D(s’)(l + e2iso(S’)) 
(3.26) 

s1 Z ((s’ - 4mc2)(s’ - 4m02))l12 * 

Similar to Eq. (3.9) we can transform (3.26) into integrals over the right-hand 
cut. The result is: 

_ ; (A0 _ ALO) = ds’ (--(1/2) As$“‘,’ Irn D(s’) D’(s, ; j-w 

4wa,2 

1 
-.I 

4m,2 

+ D(s) 
ds’ ’ 

2D(s’) sin a,(~‘) eisO(“) 
(3.27) 

sl sI--s ((s’ - 4mr2)(4m02 - s’))~/~ . 



THF! f?+e- CROSS SECTION 177 

In (3.27) the phase shift 8,(s) must be contined below threshold. We have 

D(s) sin 6,(s) er80(8) = -1m D(S) = ((s - 4m,3/s)‘le N(S). (3.28) 

Our Eq. (3.27) agrees with the result obtained by Mandelstam [lo] and by 
Blankenbecler and Nambu [lo] for the case of bound systems with small binding. 

Similarly for q2 > (nz, + 2m,J2 we include the final state interaction when the 
left-hand cut is given by (3.24). We obtain in this case: 

-gp =-q” ds’-1 
(s’)l/2 D(d) 

D(s) w-m s - s ((s’ - 4ms2)(s’ - s-)(s’ - s+))li2 

1 -- 
s 

Sl 1 
D(s) S2 ds’ 7 

(sI)l/2 D($) e2i&,(S’) 

s - s ((s’ - 4m,2)(s’ - s-)(s’ - s+))l12 

1 
s 

s- 1 
4m,2 ds’ y 

(s31/2 D@‘)(l + e2e’609 

-__ 
D(s) s - s ((s’ - 4mwZ)(s’ - s-)(s’ - s+))li2 

1 
+ D(s) sa 

1 
-/‘ds’- 

(#/2 D(s’)(l _ e2i~09 

s’ - s ((s’ - 4m,3(s’ - s-)(s’ - s+)y2 

1 
I 

4m,2 

dk-- 
(sf)1/2 D(s’)(l _ e2i~o(9 

-- 
D(s) o s’ - s ((s’ - 4w&2)(9’ - sx)(s’ - s+))l/2 * 

(3.29) 

It is clear that (3.29) reduces to (3.24) if the TRT interaction vanishes (D = 1, 
So = 0). If we transform (3.29) into integrals over the right-hand cut we have 

_ ;(A,, _ A~,,) = D’(s, ; ,-= &’ (-(1/2) Al;O(s’))lm D(s’) 
4m,= s -s 

1 -- 
I 

‘- ds’ 1 2(s’)l” i sin 6,(s’) eiso(“)D(s ) 
W 4m,,a sI--s ((s’ - 4m,2)(s’ - s-)(s’ - s+>y 

1 2(s )‘12 i sin 6,(s’) eisocS”D(s’) -- 
s 

s1 & ---L- 
D(s) s2 s’ - s ((s’ - 4m,2)(s’ - s-)(s) - s+))lj2 

1 2(~‘)l’~ i sin 6,(s’) e280(8’)D(sr) -- 
I 

‘ds’ ’ 
W sa 7-T ((s’ - 4m,2)(s’ - s-)(s’ - s+))l12 

1 
s 

4m,2 

ds’1 
~(s’)I’~ i sin a,(~‘) eis~(s”D(s’) -- 

W o s’ - s ((s’ - 4m,2)(s’ - SK)(s’ - s+))ll2 * 
(3.30) 
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Since we have no information about the continuation of the phase shift below the 
TP threshold we shall neglect the last three terms in (3.30). The inclusion of sub- 
traction terms is straightforward. 

Concerning anomalous threshold terms, the pion exchange is the most important 
one. For all other states in the t and u channel with larger masses, as for example 
the o, which make the p stable, the situation is simpler as for the pion intermediate 
state as we shall see. 

In the following we shall now consider the o exchange, especially the con- 
tinuation of the partial wave amplitudes as a function of @. Here the partial 
wave projections of the invariant amplitudes are [7] 

x 
( 
4t + 4m,2 - s - PI2 - 42 

-I- 
4u -j- 4rnT2 - s - p12 - q2 

t - mu2 u - mu2 1 
Pj(COS e) 

A,j = cos qJ-+ 
t - mu2 .‘, 2) 

w 
Pj(COS 

(3.3 1) 
4 

A,j = A,j = - ~g,,,g,,,(q2) k JTl d Cos 6 (A - ’ 
w  u - m,2 

) &(COS 0). 

Let us depict one of the partial wave amplitudes free of kinematical singularities, 
e.g., A”. A0 now is given instead of (3.13) by: 

A”= ;J: dcosB(&+ 
1 

) 
=- , p2 f , q , Qo(4 W-9 

1 w 24 - mu2 

with 
z = (3 - p12 - q2 + 2(mw2 - m,‘W I p2 I I q I (3.33) 

The singularities in s, which correspond to z = f I, are found from (3.16), where 
a, b and c are now given by: 

a = mu2 

2b = mu4 - mu2(2mT2 + q2 + m,2) + (mm2 - q2)(mn2 - m:) 

c = mn2(q2 - inO”)” 

(3.34) 

The discriminant b2 - ac is for this case equal to 

b2 - ac = &((mu + m,J2 - q2)(q2 - (mu - mJ2) 

x ((mu + mJ2 - mo2)(mo2 - (mm - m,Y) (3.35) 

so that b2 - ac 2 0 for the case of stable particles, i.e., (m, - mJ2 < mp2 < 
(m, + m,J2 and (m, - m,J2 < q2 < (mw + m,)2. The physical p mass is such that 
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this constraint for m02 is satisfied so that only q2 must be continued up to the range 
of physical interest. For the constraint on q2 above we have two branch points 
s,,, on the real axis given by 

as - -b + (b2 - a~)~/~. 1.2 - (3.36) 

For q2 = (mm - WZ~)~ the two branch points coincide and lie below 2m,,2 on 
the real axis. As before we give q2 a small imaginary part and study the branch 
points as a function of q2. The migration of s1 , s2 , and S- as a function of q2 is 
shown in Fig. 5. For q2 = 2(mw2 + mv2) - mp2 the branch point crosses the 
physical cut s > 4mw2 and migrates into the lower half plane to the left up to the 
point s q = sO where S, and s2 start to migrate into the complex plane, when 
q2 = (m,, + m,)2. Below the critical point q2 + mp2 = 2(mw2 + m,2) the s-wave 
amplitude A0 has the same representation as for pion exchange as given by (3.22). 
The corresponding final state corrected amplitude is then equal to (3.25), of course 
with the integration limits s1 and s2 as obtained for w  exchange. If q2 is increased 
up to the value of interest we have to correct for the fact of s1 and s2 migrate into 
the complex plane. The result is: 

(s’)l/2 

s - s ((s’ - 4mv2)(s’ - sJ(s’ - s+))1/2 

+ j-:” ds’ -!-- 
(sy 

s’ - s ((s’ - 4mT2)(s’ - sJ(s’ - s+))1/2 

+ Is; ds’ +- 
(s’)1/2 

s - s ((s’ - 4mT2)(s’ - s-)(s’ - s+))li2 

s 

s- 
ds’1 

2(s’)1/2 - 
4?n,2 s’ - s ((s’ - 4mT2)(s’ - s-)(s’ - s+))1/2 . (3’37) 

Lms 11 )< 
SZ/ / / / 

/’ / / - -------- , Sl L______ _--_- ------- -. 
v I ) ^--- 

L ____ & --b?qz.-$-- - * ReS 
\ ,, Imd 

I 

\ \ 
‘\ 

x 
FIG. 5. Continuation of sl, s2, and s- for the w exchange diagram. 
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Based on (3.37) the final-state corrected amplitude is: 

(s’)l/2 D(s’) 
((s’ - 4m,‘q(s’ - sJ(s’ - s+))ll2 

1 
+ D(s) a-2 

-j-“ds’ 
1 (s’)~/~ D(s’) 

sI--s ((s’ - 4m,2)(s’ - sJ(s’ - s+))l/2 

(#/2 D@‘) e2i&,(S’) 

&’ -1 
(#2 D(s’)(l + e2iso(9 

s’ - s ((s’ - 4m,Z)(s’ - sJ(s’ - s+))li2 

ds’ ’ 
(#/2 D(s’)(l _ e2%(9 

7-T ((s’ - 4m,2)(s’ - sJ(s’ - s+)y2 * 

(3.38) 

Of course (3.38) agrees with (3.37) for vanishing final state interaction. It is con- 
venient to transform the result (3.38) in such a way that mostly integrals over the 
right-hand cut appear. We denote the uncorrected amplitude (3.37) by ALo and 
obtain: 

_ ; (Ao _ ~~0) = ds’ (-(1/2) +%‘)) Irn W) D;s, ; Jrn 
4m,2 s --s 

1 s- 2(~‘)l’~ D(s’) i sin S&s’) eiso(“) -- 
f D(s) 4m,,z 

ds’ ’ 
7=-i- ((s’ - 4m,2)(s’ - sJ(s’ - s+))l/2 

1 
+ D(s) so 

1 
-f’ds’- 

2(s’)“” D(s’) i sin &,(s’) eiso(“) 
s’ - s ((s’ - 4m,3(s’ - s-)(s’ - s+))l12 

1 lm,2 2(s’)“’ D(s’) i sin S,(s’) cisoCS’) -- 
s D(s) o 

ds’ ’ 
sI--s ((s’ - 4m,3(s’ - sJ(s’ - s+))“” * 

(3.39) 

The last two integrals will be neglected since we have no information about the 
phase shift 6,(s) outside the physical region. One should mention that the integrals 
in Eqs. (3.30) and (3.39) are finite at s = s- and s = 4rnm2 even though it seems they 
are not. For this we remember that the last three integrals in Eqs. (3.30) and (3.39) 
proceed along the lower rim of the cut. 
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4. RESULTS 

Before presenting the results for the POE transition form factors G1 and Ga 
we shall put together the input parameters. We need values for g,,, , g,,, the form 
factors Fn(q2) and gy,,(q2) and the Regge trajectory OL, . The coupling constants are 
chosen as follows g,,, = 5.97, g,,, = 2.1&, gywn(0) = 0.112m;’ with 
m, = 0.77 GeV. The form factor of the pion is approximated by the p dominance 
form 

E(q2) = m,2/(m,2 - s3 (4.1) 

which gives a fairly good representation of the pion form factor in the space and 
timelike region [l 11. The 07~ transition form factor is also assumed to be given by 
the p dominance form 

gywn(q2) = gyAO>(m,2/(m,2 - 49) (4.2) 

with gyw,(0) fitted to the partial decay width r(w + nr) = 0.9 MeV. g,,, is 
obtained from g,&o) through the usual p dominance extrapolation. This is a 
reasonable assumption here since anomalous singularities are not to be expected 
in this case. 

The w  Regge trajectory is chosen to be a,(t) = 0.5 + t. These definitions com- 
pletely specify our left-hand cut parametrization. For the right-hand cut we need 
the n7r s-wave shift. There exist many phase shift analysis for the 7~7r s-wave, which, 
unfortunately, are not unambiguous. On the other hand it seems to be established 
now that the s-wave phase shift goes through 90” under the p and thefmesons (12). 
The change of phase is rather slow and inelastic effects near the KK threshold are 
certainly present. Therefore one is reluctant to describe the behavior of the s-wave 
phase shift by T-matrix poles. To obtain a realistic description of the VET swave, 
a many channel representations should be used. Then besides the process y -+ pm 
we had to consider also other processes as for example y --f pKK which are coupled 
to pm via K* exchange. Such many channel calculations would be beyond the 
scope of this paper [13]. Here we take for the I= 0 s-wave shift a simple 
Breit-Wigner ansatz 

where 
So(4 = arc cotWE - s>/p(s) Q.> (4.3) 

p(s) = (s - 4m1,2)/s)1/2 

Q, = rzd~(m,2). 
(4.4) 

The parameters m, and r, are m, = 0.7 GeV and I’, = 3m, . 
With the parametrization described above we calculated the POE transition form 

factor G, and G, with the help of Eq. (2.11). We considered three cases: (a) rr and 
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w exchange is assumed and the contributions of the anomalous singularities are 
fully taken into account, (b) only the n exchange contribution is taken into account 
instead of rr + w  in (a), (c) the contributions coming from anomalous threshold 
singularities are neglected, but both exchanges r and w  are considered. The results 
are shown in Table I. Instead of Gz we give the results for 

so that e, has the same dimension as G, . Both are given in units of m$. The 
numbers of G1 and G, are such that F,(q2) as given by Eq. (4.1) has been factored 
out. Therefore to obtain the actual form factors, Gi and G, in Table 1 must be 
multiplied by F,(q2). From Eq. (2.7) we see that the longitudinal cross section 
CJ, N 1 P I2 is proportional to G12, whereas the unpolarized transverse cross section 
gr, N 1 P j2 is proportional to (G, + c2)2. Without anomalous threshold contri- 
butions the form factors G1 and G1 + c2 , which determine the independent cross 
sections u, and cru are rather small. These cross sections are exhibited in Fig. 6c. 
Near threshold they are of the order of 0.1 nb, which is much to small compared to 
the measured cross section for a(e+e- - 23~+27~). Including anomalous thresholds 
the form factors G1 and G, are much larger, in particular G, which contributes to 
both cross sections uU and a, , whereas e2 seems to be less dependent on the 
inclusion of anomalous threshold terms. The comparison of the column (a) and 
(b) of Table I shows the influence of the w  exchange. It reduces e2 for larger q2 
which has the effect that the cross section go with ?I and o exchange is larger for 

TABLE I 

Transition Form Factors G1 and (?* divided by F,, as a Function 
of q* for Three Cases 

10 2” 3c 

qe lmf qe lGev*l G G G G 4 G 
loo 1.96 0.222 -0.0832 0.198 -0.0388 0.0309 -0.0604 
150 2.94 0.282 -0.0849 0.256 -0.0620 0.0329 -0.0568 

175 3.43 0.308 -0.0893 0.283 -0.0786 0.0431 -0.0561 
200 3.92 0.353 -0.0911 0.306 -0.0932 0.0545 -0.0565 
300 5.88 0.475 -0.159 0.387 -0.157 0.100 -0.111 
500 9.80 0.554 -0.113 0.505 -0.264 0.115 -0.0808 
800 15.7 0.631 -0.0839 0.630 -0.390 0.124 -0.0546 

a ,, + w exchange with anomalous threshold contributions (ate). G, and cX are given in 

m;‘. 
b n exchange with ate. 
c r + w exchange with ate neglected. 
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ubb) - 

Ill - 

FIG. 6. Cross sections (I” and OL for efe- -+ p% as a function of the total cm energy (qa)1/2 
for the three cases (a) x and w exchange, (b) VT exchange, and (c) 7~ and w exchange without contri- 
bution from anomalous thresholds. 

higher q2 than the cross section uu with rr exchange only. Furthermore the inclusion 
of the w  causes a second maximum in uU near (q2)l12 = 2 GeV. uL is much less 
influenced by the w  exchange (see Fig. 6a and b). 

In Fig. 7 we compared the calculated cross sections for the two cases (a) and (b) 
with the recent data of Bernadini et al. [14] and Mehrgardt et al. [15]. These data 
are for e+e- -+ n+.rr-rr+v. The analysis shows that the dominant part are p”n+w- 
states. We assume that pOn+n- is dominantly POE. To account for the decay E ---f 2~~ 
the cross sections 0 = uU + u, in Fig. 6a and Fig. 6b must be multiplied by 
$ to obtain the p”7+- channel. The agreement with the experimental data is 
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olnbl 
30 

%---2lv2lr 

FIG. 7. Comparison of the theoretical prediction with the data of [14, 151 as a function of the 
total cm energy qa. The curves show &(e+e- + p%).The dashed curve if for the v  exchange model, 
the full curve is for the r + o exchange model. The full points are the data of Bernadini et al. 
[14], the two cross points come from Mehrgardt et al. [15]. 

reasonable. The model with only 7r exchange agrees even better (version (b)) than 
the fl + w  exchange model. In both models the fall-off of the form factors with 
increasing q2 is not strong enough. Furthermore the threshold region is not well 
accounted for. This may be caused by the quasi-two-body approximation of the 
p%r+n- state. If the final state is treated as a genuine three-body state the cross 
section near threshold increases and the threshold is shifted to lower energies [7]. 
It may be that this effect is not sufficient to bring the theory into agreement with 
the data. In the moment we cannot exclude the possibility that a p’ (1.6) is needed 
to explain the large cross section near threshold. Nevertheless we see that a 
reasonable interpretation of the Frascati data for efe- + 27~+7~- can be achieved 
by assuming the dominance of the pee quasi-two-body final state and with our 
dispersion theoretic model of POE transition form factor. Of course we can give 
a similar interpretation to the four-pion enhancement in the photoproduction 
process yp + 257+23--p observed at SLAC [2]. It was essential to include the 
anomalous threshold contributions into the left-hand cut to obtain the right order 
of magnitude for the form factors G, and G, to fit the e+e- + 2rr+2n- data. On 
the other hand the agreement with these data is not perfect (see Fig. 7). In particular 
the w  exchange contribution needs further study. Second the inclusion of other 
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exchanges, like for example Al-exchange, might improve the large q2 behavior 
of the form factors. Another problem is the inelasticity of the 7~7~ s-wave, already 
mentioned, which might also modify our result. The study of all these effects is 
left for the future now where the basic mechanism has been established. 

5. CONCLUSIONS 

We conclude that anomalous thresholds play a dominant role in timelike 
q2-leptoproduction of hadrons which makes any vector-dominance extrapolation 
into this regime rather doubtful. In the particular channel under consideration the 
effect is most significant at medium q2 where the anomalous singularity contri- 
butions account for 98 % of the cross section. At higher q2 this fraction reduces 
somewhat but the anomalous singularity contributions still stay dominant. One 
wonders why the naive vector dominance extrapolation of the l yy coupling 
constant in [7] gave the correct order of magnitude for the e+e- -+ POE cross section. 
The reason is, that the actual EYY coupling constant neglecting anomalous singu- 
larities would decrease as q2 = p12 --f mo2 in addition to the vector dominance 
corrections due to the fact that the left hand cut integral (Eq. (3.22)) starts at 
s1 = (-mQ4 + 4m,2mp2>/m,2 instead of s1 = 0 which has not been taken into 
account in [7]. It is the contribution from the anomalous thresholds which com- 
pensates this decrease so that the naive vector dominance extrapolation looks 
correct. If (say) q2 is increased further (but pr = m,," fixed) then the coupling 
constants (see Table I) start to increase again since in this regime kinematic factors 
(involving q2) become important. 

The dominance of anomalous singularities makes the dispersion relation 
approach a rather clean model for describing exclusive channels in electron- 
positron annihilation into hadrons. First of all the left-hand cut is well saturated 
by the exchange of a few light particles giving rise to anomalous thresholds. 
Secondly, intermediate states higher than two pions are unlikely to acquire 
anomalous singularities so that they can be ignored. This makes electron-positron 
annihilation into hadrons also extremely suitable for studying 71~ scattering. 
Finally, we have achieved a fairly good description of the efe- + pm cross section. 

We should mention that similar anomalous threshold effects are to be expected 
in form factors of other unstable particles, like for instance p+p- (r exchange), 
dd (N-- exchange) and many others. After completion of this work we learned 
that a calculation of the POE electromagnetic form factor was done by Gutbrod 
and Weiss [15] based on a more field-theoretic model. The assumptions and the 
methods used in this calculation are completely different, although the final results 
agree qualitively with ours. 
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APPENDIX A 

Here we list the transformation coefficients gi, defined in (2.4), which relate 
the s-channel helicity matrix elements to the invariant amplitudes A&, t) (see (2.3)): 

1 &l = --4P1 

& = 2wlP22 sin2 6 - Qq QP, 

g:, = -q”P,Q 

6- g,, - -P,“c2” 

g:-1 = g-1 = .g-l = &, = 0 

g;-l = -2qplpz2 sin2 0 

g:, = g:, = g, = 0 

g$ = -2(2)112(qs)1/2 pz2 sin 8 cos 0 

8, = -21/2tq2Yi2 I p2 I I q I (plo - qo) sin 8 

& = g& = g& = 0 

gtl = -2(2)1/2(p,2)112 pz2 sin 0 cos e 

g$ = -21/2(P,2Y2 I p2 I I 9 I tqo - plo) sin 0 

g&l = -tq2P12)1’2 

g$ = 4(qsply p2” COS2 8 

g;, = 2tq”p,31/2 I p2 I I q I cos e 

go = -tq2P12Y’2 4Pl * 

8 is the angle between q and p2 in the two-pion center-of-mass system. The variables 
I q I = I q1 I, I pz I, plo and q. can all be expressed by s = (q - P~)~. The other 
Mandelstam invariants are t - (q - p2)2 = mx2 + q2 - 2q,p,, + 2 1 q 1 jp2 / cos B 
and u = (q - J# = --s - t + q2 + LX,,~ + 2tnr2. Furthermore Q = pz -pa. 
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